USN

Fifth Semester B.E. Degree Examination, December 2010 Microwaves and Radar

Time: 3 hrs.

Max. Marks:100

Note: I. Answer any FIVE full questions, selecting at least TWO questions from each part.

- 2. Smith chart must be provided.
- 3. Standard notations are used.
- 4. Draw neat diagrams, wherever necessary.
- 5. Missing data may be suitably assumed.

PART - A

- 1 a. Define reflection coefficient. Derive the equation for reflection coefficient at the load end and at a distance 'd' from load end, starting from equation for Zl. (10 Marks)
 - b. A 300Ω lossless line is terminated in a load of $(600 + j300)\Omega$, operating at 600 MHz. Find SWR on the line. Design a single stub matching section, assuming main line and stub are of the same type (Use Smith chart). (10 Marks)
- 2 a. Briefly explain the following microwave devices:
 - i) Hybrid ring
 - ii) Two hole directional coupler.

(10 Marks)

b. Write field components of TE₁₀ mode inside a rectangular waveguide. Using this, derive the equation for power transmitted through the guide for the dominant mode in Z-direction.

(10 Marks)

- 3 a. With the help of drift velocity graph and current waveform, explain the constructional feature and working of n-type GaAs diode. (08 Marks)
 - b. Write an explanatory note on read diode.

(06 Marks)

- c. An up converter parametric amplifier has the following parameters: Ratio of o/p frequency to signal frequency is 25, figure of merit = 10, factor of merit figure = 0.4, diode temperature = 350 K, $T_0 = 300 \text{ K}$. Find the power gain in dB, noise figure in dB and band width.
- 4 a. Starting from the impedance matrix equation, prove the symmetry property of a reciprocal network.

 (08 Marks)
 - b. Two transmission lines of characteristic impedances Z₁ and Z₂ are jointed at plane PP'. Express S parameters in terms of impedances. (08 Marks)
 - c. Write relationship of ABCD parameters with S parameters.

(04 Marks)

PART - B

- 5 a Briefly explain the working of a precision rotary phase shifter, with the help of diagram and E field components.

 (09 Marks)
 - A 20 MW power is fed into one collinear port 1 of a lossless H plane tee junction.
 Calculate the power delivered through each port, when other ports are terminated in a matched load.
 (06 Marks)

How the magic tee can be used as an E-H tuner? Explain.

(05 Marks)

Briefly explain dielectric losses and radiation losses in microstrip lines. 6

(10 Marks)

Show that $Qd \cong \frac{1}{\tan \theta}$ for a microstrip line.

(04 Marks)

- c. A lossless parallel strip line has a conducting strip width of W. The substrate separating the two conducting strips has a relative dielectric constant of 6 and thickness d of 4mm. Calculate:
 - Required width W of conducting strip, inorder to have a characteristic impedance of i)
 - Strip line capacitance and inductance. ii)

(06 Marks)

- Derive the simple radar range equation, starting from the power density of isotropic antenna.
 - With the help of a neat block diagram, explain the working of pulse radar.
 - c. Name some of the important applications of radar.

(08 Marks) (04 Marks)

(08 Marks)

8 With the help of a neat block diagram, explain power amplifier type MTI radar.

- (10 Marks)
 - b. Write explanatory notes on:
 - Blind speeds in MTI radar. i)
 - ii) Pulse Doppler radar.

(10 Marks)